Energetics of divalent selectivity in a calcium channel: the ryanodine receptor case study.
نویسنده
چکیده
A model of the ryanodine receptor (RyR) calcium channel is used to study the energetics of binding selectivity of Ca(2+) versus monovalent cations. RyR is a calcium-selective channel with a DDDD locus in the selectivity filter, similar to the EEEE locus of the L-type calcium channel. While the affinity of RyR for Ca(2+) is in the millimolar range (as opposed to the micromolar range of the L-type channel), the ease of single-channel measurements compared to L-type and its similar selectivity filter make RyR an excellent candidate for studying calcium selectivity. A Poisson-Nernst-Planck/density functional theory model of RyR is used to calculate the energetics of selectivity. Ca(2+) versus monovalent selectivity is driven by the charge/space competition mechanism in which selectivity arises from a balance of electrostatics and the excluded volume of ions in the crowded selectivity filter. While electrostatic terms dominate the selectivity, the much smaller excluded-volume term also plays a substantial role. In the D4899N and D4938N mutations of RyR that are analyzed, substantial changes in specific components of the chemical potential profiles are found far from the mutation site. These changes result in the significant reduction of Ca(2+) selectivity found in both theory and experiments.
منابع مشابه
Intracellular calcium release channels mediate their own countercurrent: the ryanodine receptor case study.
Intracellular calcium release channels like ryanodine receptors (RyRs) and inositol trisphosphate receptors (IP(3)Rs) mediate large Ca(2+) release events from Ca(2+) storage organelles lasting >5 ms. To have such long-lasting Ca(2+) efflux, a countercurrent of other ions is necessary to prevent the membrane potential from becoming the Ca(2+) Nernst potential in <1 ms. A recent model of ion perm...
متن کاملIon conduction and selectivity in the ryanodine receptor channel.
The ryanodine receptor channel is an intracellular membrane Ca2+-release channel. The investigation of ion translocation and discrimination in individual channels under voltage-clamp conditions has revealed that the channel can sustain very high rates of cation translocation, has high affinity for divalent cations and displays relatively poor discrimination between physiologically relevant cati...
متن کاملPurified ryanodine receptor from rabbit skeletal muscle is the calcium- release channel of sarcoplasmic reticulum
The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified as a single 450,000-dalton polypeptide from CHAPS-solubilized triads using immunoaffinity chromatography. The purified receptor had a [3H]ryanodine-binding capacity (Bmax) of 490 pmol/mg and a binding affinity (Kd) of 7.0 nM. Using planar bilayer recording techniques, we show that the purified receptor forms ca...
متن کاملReinterpreting the anomalous mole fraction effect: the ryanodine receptor case study.
The origin of the anomalous mole fraction effect (AMFE) in calcium channels is explored with a model of the ryanodine receptor. This model predicted and experiments verified new AMFEs in the cardiac isoform. In mole fraction experiments, conductance is measured in mixtures of ion species X and Y as their relative amounts (mole fractions) vary. This curve can have a minimum (an AMFE). The tradit...
متن کامل(De)constructing the ryanodine receptor: modeling ion permeation and selectivity of the calcium release channel.
Biological ion channels are proteins that passively conduct ions across membranes that are otherwise impermeable to ions. Here, we present a model of ion permeation and selectivity through a single, open ryanodine receptor (RyR) ion channel. Combining recent mutation data with electrodiffusion of finite-sized ions, the model reproduces the current/voltage curves of cardiac RyR (RyR2) in KCl, Li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 94 4 شماره
صفحات -
تاریخ انتشار 2008